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a b s t r a c t

Factorial designs are arguably the most widely used designs in
scientific investigations. Generalized minimum aberration (GMA)
and uniformity are two important criteria for evaluating both
regular and non-regular designs. The generation of GMA designs
is a non-trivial problem due to the sequential optimization nature
of the criterion. Based on an analytical expression between the
generalized wordlength pattern and a uniformity measure, this
paper converts the generation of GMA designs to a constrained
optimization problem, and provides effective algorithms for
solving this particular problem. Moreover, many new designs with
GMA or near-GMA are reported, which are also (nearly) optimal
under the uniformity measure.

© 2008 Published by Elsevier Inc.

1. Introduction

Factorial designs are arguably the most widely used experimental designs in industrial and
scientific investigations. Their practical success is due to the efficient use of experimental runs to
study many factors simultaneously. From different viewpoints, various optimality criteria have been
proposed for design construction and comparison. Themaximumresolution criterion proposed byBox
and Hunter [1] and minimum aberration criterion by Fries and Hunter [14] are two most successful
optimality criteria. These two criteria show the rationality under the effect hierarchy principle.
However, both of them are defined only for regular designs and they cannot be used to evaluate
factorial designs in general. Recently, generalized minimum aberration (GMA) was proposed by Tang
and Deng [24] for the two-level non-regular case, by Ma and Fang [21] for the multi-level case, and
by Xu and Wu [27] for the mixed-level case.
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For a design matrix P = (pij), which has n runs and s factors each having q levels, i.e. pij =
0, . . . , q − 1, i = 1, . . . , n, j = 1, . . . , s, let Xj be the contrast matrix of j-factor interactions of P .
For j = 1, . . . , s, if Xj = (x

j
ik), let

Aj(P) =
1
n2
∑
k

∣∣∣∣∣ n∑
i=1

xjik

∣∣∣∣∣
2

, (1)

then W (P) = (A1(P), . . . , As(P)) is called the generalized wordlength pattern (GWP) by Xu and
Wu [27], and the index of the first non-zero element corresponds to the resolution. For a design of
resolution III or higher, the GWP is usually simplified asW (P) = (A3(P), . . . , As(P)). The generalized
minimum aberration (GMA) criterion proposed by them is to sequentially minimize Aj(P) for j =
1, . . . , s. They showed that the definition of Aj(P) in (1) is invariant with respect to the choice of
orthonormal contrasts and thus model free and also the GMA reduces to the minimum aberration
for regular designs and the minimum G2-aberration (Tang and Deng [24]) for two-level non-regular
designs.
The GMA is also equivalent to the minimum generalized aberration proposed by Ma and Fang [21]

for multi-level designs. Given the design matrix P = (pij), Ma and Fang [21] defined

Agj (P) =
1

n(q− 1)

s∑
k=0

Pj(k; s)Ek(P), j = 1, . . . , s, (2)

where Pj(k; s) =
∑j
r=0(−1)

r(q−1)j−r
(
k
r

) (
s−k
j−r

)
is theKrawtchoukpolynomial

((
x
y

)
= 0 for x < y

)
,

Ek(P) = n−1 |{(a, b)|a, b ∈ P, dH(a, b) = k}| , |A| denotes the cardinality of A, and dH(a, b) is theHam-
ming distance between two runs a and b. Fang et al. [10] showed that

Aj(P) = (q− 1)A
g
j (P) (3)

for the multi-level case, in particular, Aj(P) = A
g
j (P)when q = 2.

The GMA criterion is difficult and expensive to compute, because its definition involves a
complicated coding of factorial effects that include all main effects and interactions (Xu [25]). In
addition, it is very hard to operate with GMA because the GWP is a vector. There exist only a
few approaches to the construction of GMA designs. Fang et al. [10] proposed the RBIBD method
for constructing GMA multi-level supersaturated designs, which are of resolution II. For designs of
resolution III or higher, Butler [2,3] developed alternative methods for constructing minimum G2-
aberration two-level designs; Butler [4] obtained some GMA designs by projecting specific saturated
orthogonal arrays; Xu [26] derived some GMA non-regular designs from the Nordstrom–Robinson
code; Fang et al. [13] recently provided a formal optimization treatment on optimal designswithGMA,
and proposed a general sub-design selection algorithm, which utilizes their newly developed lower
bounds and optimality conditions. Note that, for two-level designs, the GMA criterion is a relaxed
variant of theminimum G-aberration proposed by Deng and Tang [7], while Deng and Tang [8], Sun, Li
and Ye [23] and Li, Deng and Tang [18] constructedmany two-level orthogonal designswithminimum
G-aberration.
The above drawbacks of GMA can be overcome if we can convert the vector problem to a scalar

problem. The discrepancy measure of uniformity can play a key role for this. The discrepancy is
another important measure used for evaluating factorial designs (Hickernell [15]; Fang et al. [11]).
It measures how much the empirical distribution of the design points departs from the uniform
distribution (Hickernell [16]). Recently Hickernell and Liu [17] defined a general discrepancy which
has been proved to be a function of Aj(P)’s, i.e.

D2(P; γ ) =
1
n2

n∑
i,k=1

s∏
j=1

{
1+ γ (−1+ qδpijpkj)

}
− 1 (4)

=

s∑
j=1

γ jAj(P), (5)
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where γ is an arbitrary positive number. From a uniformity point of view, for a fixed number of points,
n, a design with low discrepancy is preferred (Fang and Wang [12]).
This paper will find a surrogate for GWP based on the connection between GWP and the

discrepancy in (5), which can reduce the computation and generate GMA designs more conveniently.
The paper is organized as follows. Section 2 converts the problem of finding GMA designs to
a constrained optimization problem, and Section 3 discusses the algorithms for solving this
optimization problem. Many newly generated GMA or near-GMA designs are tabulated in Section 4,
which are also (nearly) optimal under the discrepancymeasure of uniformity. Section 5 contains some
further discussions.

2. Reformulation of the problem of finding GMA designs

To reformulate the problem of finding GMA designs, we need the following lemma.

Lemma 1. If ai ≥ 0, bi ≥ 0, for i = 1, . . . , k, and a1 < b1, then there exists an r0 > 0, such that
a1r + · · · + akrk < b1r + · · · + bkrk for 0 < r < r0.

Proof. Since

lim
r→0

(a1 + · · · + akrk−1) = a1 < b1 = lim
r→0

(b1 + · · · + bkrk−1),

there exists an r0 > 0 such that a1 + · · · + akrk−1 < b1 + · · · + bkrk−1 for 0 < r < r0, namely,
a1r + · · · + akrk < b1r + · · · + bkrk for 0 < r < r0. �

From Lemma 1, we obtain the following theorem.

Theorem 1. There exists a γ0 > 0, such that minimizing D2(P; γ ) is equivalent to finding a GMA design
when 0 < γ < γ0.

Let X = (xij) be a full design matrix with s factors each having q levels, xij = 0, . . . , q − 1,
i = 0, . . . , qs − 1, j = 1, . . . , s. The level combinations of the full design matrix X are arranged
lexicographically, e.g. the first level combination is (0, . . . , 0, 0), the second one is (0, . . . , 0, 1), and
the last one is (q − 1, . . . , q − 1, q − 1). Let y be a qs × 1 vector, where the ith component yi is k
if the ith level combination of X repeats k times in design P , i = 0, . . . , qs − 1. Hence y satisfies the
constraint

y ′1qs = n, (6)

and yi is a non-negative integer, i = 0, . . . , qs − 1, where 1n denotes the n × 1 vector of ones. Then
from (4) we obtain:

Lemma 2.

D2(P; γ ) =
1
n2

y ′Bsy − 1, (7)

where Bs =
⊗s B0, B0 = (bij)q×q, bij = 1+ γ (q− 1) for i = j and 1− γ otherwise, i, j = 1, . . . , q, and⊗

denotes the Kronecker product.

From Theorem 1 and Lemma 2, it can be seen that given a sufficiently small positive value of γ ,
the problem of finding a GMA design can be transformed to the problem of finding a vector y which
minimizes (7) under the constraint (6) and yi being a non-negative integer for i = 0, . . . , qs − 1.
Theorem 4.1 of Cheng and Ye [6] shows that the sum of GWP elements is larger for designs

with higher degrees of replication, therefore they tend to have higher aberration than those with
less replicates, so in this paper, for finding GMA designs via computer algorithms, we change the
constraints on y to{

y ′1qs = n, and
yi = 0 or 1, for i = 0, . . . , qs − 1. (8)
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Remark 1. For some cases, if there does not exist any orthogonal array without replicates, our
algorithm cannot find an orthogonal design under the constraints in (8), but can find a design with
a smaller sum of GWP elements. For example, Cheng [5] showed that there is a unique OA(12, 24)
which has 11 distinct runs. For this case, we can find a 12-run, 4-factor, two-level design with GWP
(0, 1/9, 2/9, 0); the sum of the elements of this GWP is 1/3. However, the GWP of the unique
OA(12, 24) is (0, 0, 4/9, 1/9), and the sum is 5/9which is greater than 1/3. In addition, the constraints
in (8) can accelerate the computer search.

3. Optimization methods

The problem discussed in the previous section can be converted into the following optimization
problem.

3.1. A general algorithm

One fundamental approach to solving a constrained optimization problem is to replace the original
problemby a penalty function that consists of (i) the original objective of the constrained optimization
problem, and (ii) one additional term for each constraint, which is positive when the vector y violates
that constraint and zero otherwise. There are many penalty functions available, among them a simple
and commonly used one is the quadratic penalty function, in which the penalty terms are the squares
of the constraint violations.
For the problem of generating GMA designs, we consider the optimization problem of finding

a vector y to minimize (7) under the constraints in (8). The quadratic penalty function can be
constructed as

min
y
Q (y;µ) =

1
n2

y ′Bsy − 1+ 1/(2µ)

(∑
i

yi − n

)2
+ 1/(2µ)

∑
i

(yi(1− yi))2 , (9)

whereµ > 0 is the penalty parameter. By drivingµ to zero, we penalize the constraint violations with
increasing severity.
A general algorithm based on the penalty function can be specified as follows.

Algorithm 1.
Given µ0 > 0, a tolerance τ0 > 0, a τstep > 0, and a starting vector y0;
for k = 1, 2, . . .do
Use the Newton method (Nocedal and Wright [22]) to find an approximate
minimizer yk of Q (·;µk−1):

start with yk−1, and terminate when ‖∇Q (y;µk−1)‖ ≤ τk−1, where ∇Q
is the gradient of function Q ;

if final convergence test is satisfied (‖yk − yk−1‖ ≤ τstep) then
stopwith approximate solution yk;

Choose a new tolerance τk ∈ (0, τk−1);
Choose a new penalty parameter µk ∈ (0, µk−1);

end for

Remark 2. We can choose any τk andµk as long as τk ∈ (0, τk−1) andµk ∈ (0, µk−1). In the following,
we will take τk = τk−1/2 and µk = µk−1/2, which will be shown to perform very well in Section 4.

3.2. Selection of y0

To carry out Algorithm 1, we need a starting vector y0. Although it can be randomly generated,
the algorithmmay converge slowly. Thus a suitable selected starting vector is called for. Generating a
starting vector for Algorithm 1 can be regarded as finding the shortest path of a graph (Diestel [9]). We
can regard yi as a vertex and then define theweight of the vertex yi as 1/n2(Bs)ii (the iith element ofBs)
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and the weight of the edge connecting yi and yj as 1/n2(Bs)ij (the ijth element of Bs). Thus we modify
Dijkstra’s algorithm (Nocedal and Wright [22]) to solve this shortest path of the n-point problem.

Algorithm 2.
Denote the weighted graph by G = (V , E), where V = {0, . . . , qs − 1} is the index
set of vertices, E is the set of the edges;
Set y = (y0, . . . , yqs−1)′ = (0, . . . , 0)′;
Find a vertex yi0 satisfying i0 = {i|mini(Bs)ii};
Set yi0 = 1,W = {i0}, dist[i0] = +∞;
for eachw ∈ V \W do

dist[w] = (Bs)ww + 2(Bs)w,i0 ;
end for
for k = 1, . . . , n− 1 do

find i0 = minw dist[w];
set yi0 = 1,W = W ∪ {i0};
for eachw ∈ V \Wdo

dist[w]+ = 2(Bs)w,i0 ;
end for

end for

From Algorithm 2 we can obtain a qs × 1 vector y = (y0, . . . , yqs−1)′, where yi = 1, for i ∈ W , and
0 otherwise. This vector can be used as a starting vector y0 for Algorithm 1. Then we can obtain the
approximate optimization solution. Note that this does not require a large computation.

3.3. Selection of γ

Theorem 1 tells us that in order to obtain a GMA design through (9), we should have a sufficiently
small γ > 0. Now let us discuss the selection of γ . First, we have:

Lemma 3. Suppose ai, bi and m are all non-negative integers, ai < m, bi < m, for i = 1, . . . , k, and
a1 < b1. If (a1, . . . , ak) and (b1, . . . , bk) are treated as the m-number system a1 · · · ak and b1 · · · bk
respectively, then

a1 · · · ak < b1 · · · bk,

i.e.

a1mk−1 + · · · + ak < b1mk−1 + · · · + bk.

Furthermore, from Theorem 4.1 of Cheng and Ye [6] we know that:

Lemma 4. For any n× s factorial design P with no replicates, where each factor has q levels, we have
s∑
j=1

Aj(P) =
qs

n
− 1.

From these two lemmas, we obtain the following theorem.

Theorem 2. If the γ in (5) satisfies that
1
γ
is a positive integer, and

1
γ
> nqs − n2,

then minimizing D2(P; γ ) is equivalent to finding a GMA design.

Proof. From (2), we know that n2(q− 1)Agj (P) is a non-negative integer, so is n
2Aj(P), since (3) holds.

Thus from (5) and Lemmas 3 and 4, the conclusion can be proved easily. �
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Table 1
Some newly generated (near-) GMA designs for q = 2 and n = 2k ≤ 64

n s (A3, . . . , As)& Set of selected points

8 5 (2, 1, 0)
{0, 7, 9, 14, 18, 21, 27, 28}

8 6 (4, 3, 0, 0)
{0, 15, 19, 28, 37, 42, 54, 57}

16 5 (0, 0, 1)a
{0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, 27, 29, 30}

16 6 (0, 3, 0, 0) ([8,23])
{0, 7, 9, 14, 19, 20, 26, 29, 34, 37, 43, 44, 49, 54, 56, 63}

16 7 (0, 7, 0, 0, 0) ([8,23])
{0, 15, 19, 28, 37, 42, 54, 57, 70, 73, 85, 90, 99, 108, 112, 127}

32 6 (0, 0, 0, 1)a
S(16, 5)∪{33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63}

32 7 (0, 1, 2, 0, 0) ([26])
{0, 7, 9, 14, 18, 21, 27, 28, 35, 36, 42, 45, 49, 54, 56, 63, 65, 70, 72, 79, 83, 84, 90, 93, 98, 101, 107,
108, 112, 119, 121, 126}

32 8 (0, 3, 4, 0, 0, 0) ([26])
S(16, 7)∪{129, 142, 146, 157, 164, 171, 183, 184, 199, 200, 212, 219, 226, 237, 241, 254}

32 9 (0, 6, 8, 0, 0, 1, 0)b
{0, 31, 35, 60, 69, 90, 102, 121, 137, 150, 170, 181, 204, 211, 239, 240, 270, 273, 301, 306, 331, 340,
360, 375, 391, 408, 420, 443, 450, 477, 481, 510}

64 7 (0, 0, 0, 0, 1)a
S(32, 6)∪{65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108,
111, 113, 114, 116, 119, 120, 123, 125, 126}

64 8 (0, 0, 2, 1, 0, 0) ([26])
S(32, 7)∪{130, 133, 139, 140, 144, 151, 153, 158, 161, 166, 168, 175, 179, 180, 186, 189, 195, 196,
202, 205, 209, 214, 216, 223, 224, 231, 233, 238, 242, 245, 251, 252}

64 9 (0, 1, 4, 2, 0, 0, 0) ([26])
S(32, 8)∪{258, 269, 273, 286, 295, 296, 308, 315, 324, 331, 343, 344, 353, 366, 370, 381, 387, 396,
405, 410, 422, 425, 432, 447, 448, 463, 470, 473, 485, 490, 499, 508}

64 10 (0, 2, 8, 4, 0, 1, 0, 0)b
S(32, 9)∪{518, 537, 549, 570, 579, 604, 608, 639, 655, 656, 684, 691, 714, 725, 745, 758, 776, 791,
811, 820, 845, 850, 878, 881, 897, 926, 930, 957, 964, 987, 999, 1016}

S(n, s) represents the set of selected points for the design with n runs and s factors.

Remark 3. From this theorem, we should select a γ satisfying 0 < γ < 1/(nqs− n2), in particular, in
this paper wewill choose γ = 1/q2s, which does not depend on n. For such a γ , the Bs used frequently
in the algorithms will remain unchanged for varying n and fixed q and s, thus can greatly save the
computing time.

4. Some newly generated designs

Tables 1–4 tabulate some newly generated designs from Algorithm 1, by using Algorithm 2 to find
the starting vector y0 for it. The values of γ ,µ0, τ0 and τstep are taken to be 1/q2s, 0.1, 10−6 and 10−10
respectively. We call all these designs (near-) GMA designs as the search in Algorithm 1 is not an
exhaustive search. Tables 1–3 are for (near-) GMA designs with q = 2 and n = 2k, q = 2 and n 6= 2k,
and q = 4 respectively; all designs have n ≤ 64 runs. For designs with larger numbers of runs,
i.e. n > 64, we have only tabulated in Table 4 the GWPs of the newly generated designs, and omitted
the sets of selected points for these designs for saving space. Interested readers can obtain them from
the authors.
In these tables, the designs marked with a can be directly shown to be GMA designs based on their

GWPs. Any design marked with a reference number can be checked to be a GMA design from the
corresponding reference. For other designs, we are not sure whether they are GMA designs or not as
there exist no conclusions to be used or designs to be compared with. In Table 1, the designs marked
with b have the same aberrationwith theminimumaberration regular designs, andwith theGMAnon-
regular designs derived from theNordstrom–Robinson code by Xu [26]. These above discussions show
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Table 2
Some newly generated (near-) GMA designs for q = 2 and n 6= 2k < 64

n s (A3, . . . , As) & Set of selected points

40 6 (0.16, 0.44, 0, 0)
{0, 1, 2, 3, 4, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 26, 29, 30, 34, 36, 37, 38, 39, 40, 41, 42, 43,
45, 48, 49, 51, 52, 55, 56, 59, 60, 62, 63}

48 6 (0, 0.3333, 0, 0)
{0, 1, 2, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38,
40, 42, 43, 44, 45, 47, 48, 49, 51, 52, 54, 55, 56, 57, 58, 61, 62, 63}

48 7 (0, 1.6667, 0, 0, 0)
{0, 1, 6, 9, 14, 15, 18, 19, 21, 26, 28, 29, 35, 36, 37, 42, 43, 44, 48, 54, 55, 56, 57, 63, 64, 70, 71, 72, 73,
79, 83, 84, 85, 90, 91, 92, 98, 99, 101, 106, 108, 109, 112, 113, 118, 121, 126, 127}

48 8 (0.3333, 1.6667, 2.2222, 0, 0.1111, 0)
{0, 6, 14, 17, 25, 31, 35, 37, 45, 50, 58, 60, 67, 69, 75, 84, 90, 92, 96, 102, 104, 119, 121, 127, 135,
137, 143, 144, 150, 152, 164, 170, 172, 179, 181, 187, 194, 202, 204, 211, 213, 221, 225, 233, 239,
240, 246, 254}

48 9 (0.6667, 3.8889, 1, 4, 0, 0, 0.1111)
{0, 3, 25, 38, 60, 63, 71, 77, 94, 97, 114, 120, 139, 146, 159, 160, 173, 180, 198, 204, 213, 234, 243,
249, 268, 277, 282, 293, 298, 307, 331, 337, 338, 365, 366, 372, 391, 404, 414, 417, 427, 440, 448,
456, 473, 486, 503, 511}

48 10 (1, 7.1111, 1.6667, 8.4444, 0.7778, 1.2222, 0.1111, 0)
{0, 11, 51, 76, 116, 127, 135, 145, 173, 210, 238, 248, 268, 281, 308, 331, 358, 371, 414, 423, 426,
469, 472, 481, 542, 554, 573, 578, 597, 609, 665, 692, 698, 709, 715, 742, 775, 800, 813, 850, 863,
888, 896, 918, 947, 972, 1001, 1023}

56 6 (0.0816, 0.0612, 0, 0)
{0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 28, 29, 30, 31, 32, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63}

that our algorithms are effective for finding GMA or near-GMA designs. We should also be aware that
those newly generated designs are also (nearly) optimal under the discrepancymeasure of uniformity
defined in (4).
Now let us show how to obtain the designs from the corresponding sets of selected points given

in Tables 1–3. The set of selected points for any design with n runs and s q-level factors contains
the positions of the n design points in the full design matrix with qs runs which are arranged
lexicographically and marked with 0, . . . , qs − 1. To obtain such a design, we only need to change
the n numbers in this set to n s-digit numbers in q-number system, and there is absolutely no need to
enumerate all the qs runs of the full design and then select the corresponding ones. This is an attractive
advantage of our algorithms, and it is of course very convenient anduseful to construct the design from
this set. For example, the eight points of the first design in Table 1 are the 0th, 7th, 9th, 14th, 18th,
21th, 27th, and 28th runs of the full design with 25 runs. To write out this eight-run design, we only
need to change 0, 7, 9, 14, 18, 21, 27, and 28 to eight binary numbers as shown below:

0 0 0 0 0 0
7 0 0 1 1 1
9 0 1 0 0 1
14 → 0 1 1 1 0
18 1 0 0 1 0
21 1 0 1 0 1
27 1 1 0 1 1
28 1 1 1 0 0.

This is also true and very useful for the case of q = 4. As another illustration, to construct the design
with q = 4, n = 16 and s = 4 given in Table 3, we only need to change the 16 selected points, say 0,
21, 42, 63, 70, 83, 108, 121, 139, 158, 161, 180, 205, 216, 231, 242 to numbers in quaternary system. In
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Table 3
Some newly generated (near-) GMA designs for q = 4 and n ≤ 64

n s (A3, . . . , As) & Set of selected points

16 4 (12, 3) ([4])
{0, 21, 42, 63, 70, 83, 108, 121, 139, 158, 161, 180, 205, 216, 231, 242}

16 5 (30, 15, 18) ([4])
{0, 85, 170, 255, 283, 334, 433, 484, 557, 632, 647, 722, 822, 867, 924, 969}

32 4 (4, 3) ([4])
{0, 7, 18, 21, 42, 45, 56, 63, 65, 70, 83, 84, 107, 108, 121, 126, 139, 140, 153, 158, 161, 166, 179, 180,
202, 205, 216, 223, 224, 231, 242, 245}

32 5 (10, 15, 6) ([4])
{0, 30, 75, 85, 170, 180, 225, 255, 261, 283, 334, 336, 431, 433, 484, 506, 557, 563, 614, 632, 647,
665, 716, 722, 808, 822, 867, 893, 898, 924, 969, 983}

48 4 (1.3333, 3)
{0, 7, 9, 18, 21, 28, 35, 42, 45, 54, 56, 63, 65, 70, 79, 83, 84, 90, 101, 107, 108, 112, 121, 126, 130,
139, 140, 151, 153, 158, 161, 166, 168, 179, 180, 189, 196, 202, 205, 209, 216, 223, 224, 231, 238,
242, 245, 251}

48 5 (3.3333, 15, 2)
{0, 30, 39, 75, 85, 114, 141, 170, 180, 216, 225, 255, 261, 283, 316, 334, 336, 361, 406, 431, 433,
451, 484, 506, 522, 557, 563, 607, 614, 632, 647, 665, 672, 716, 722, 757, 785, 808, 822, 836, 867,
893, 898, 924, 955, 969, 983, 1006}

64 4 (0, 3)a
{0, 5, 10, 15, 17, 20, 27, 30, 34, 39, 40, 45, 51, 54, 57, 60, 65, 68, 75, 78, 80, 85, 90, 95, 99, 102, 105,
108, 114, 119, 120, 125, 130, 135, 136, 141, 147, 150, 153, 156, 160, 165, 170, 175, 177, 180, 187,
190, 195, 198, 201, 204, 210, 215, 216, 221, 225, 228, 235, 238, 240, 245, 250, 255}

64 5 (0, 15, 0) ([13])
{0, 21, 42, 63, 70, 83, 108, 121, 139, 158, 161, 180, 205, 216, 231, 242, 263, 274, 301, 312, 321, 340,
363, 382, 396, 409, 422, 435, 458, 479, 480, 501, 521, 540, 547, 566, 591, 602, 613, 624, 642, 663,
680, 701, 708, 721, 750, 763, 782, 795, 804, 817, 840, 861, 866, 887, 901, 912, 943, 954, 963, 982,
1001, 1020}

64 6 (0, 45, 0, 18) ([13])
{0, 85, 170, 255, 283, 334, 433, 484, 557, 632, 647, 722, 822, 867, 924, 969, 1054, 1099, 1204, 1249,
1285, 1360, 1455, 1530, 1587, 1638, 1689, 1740, 1832, 1917, 1922, 2007, 2087, 2162, 2189, 2264,
2364, 2409, 2454, 2499, 2570, 2655, 2720, 2805, 2833, 2884, 3003, 3054, 3129, 3180, 3219, 3270,
3362, 3447, 3464, 3549, 3604, 3649, 3774, 3819, 3855, 3930, 4005, 4080}

this way the transposed design matrix of this 16-run GMA design is:

0 21 42 63 70 83 108 121 139 158 161 180 205 216 231 242
↓

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 1 2 3 1 0 3 2 2 3 0 1 3 2 1 0
0 1 2 3 2 3 0 1 3 2 1 0 1 0 3 2.

Wecan see that there is no need to enumerate all the 44 = 256 runs and then select the corresponding
16 ones.

5. Further discussions

This paper has transformed the problem of finding GMA designs to an optimization problem, and
provided effective algorithms for solving this problem. The newly generated designs can be easily
obtained from the given sets of selected points, and they are both (nearly) optimal under the GMA
criterion as well as the discrepancy measure of uniformity in (4). The algorithms can also be used
to find optimal designs under any other criterion which can be expressed as a quadratic form of y
like the D(P; γ ) in (7). For example, Ma and Fang ([19,20]) have expressed the squares of centered
L2-discrepancy (CL2(D)) and wrap-around L2-discrepancy (WL2(D)) as quadratic forms of the vector
y. Hence our algorithms can also be used to find uniform designs under the criteria of CL2(D) and
WL2(D) respectively. But the algorithms will become very slow for large q and s and cannot even
obtain a solution in practice. This is the main drawback of our algorithms.
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Table 4
The GWPs of more newly generated designs for q = 2 and n 6= 2k or q = 4

q n s (A3, . . . , As)

2 72 8 (0.1481, 0.8642, 0.7901, 0.6914, 0.0494, 0.0123)
80 8 (0.12, 1.24, 0.8, 0, 0.04, 0)
80 9 (0.24, 1.8, 0.36, 2.96, 0, 0, 0.04)
80 10 (0.36, 3.2, 0.6, 6.88, 0.28, 0.44, 0.04, 0)
96 7 (0, 0.1111, 0.2222, 0, 0)
96 8 (0.0694, 0.3889, 1.0833, 0.1111, 0.0139, 0)
96 9 (0.2361, 1.3333, 1.7222, 0.5278, 0.1528, 0.3611, 0)
112 7 (0, 0.1429, 0, 0, 0)
112 9 (0.1224, 0.1837, 0.1837, 3.0612, 0, 0, 0.0204)
112 10 (0.2245, 3.6429, 0.7653, 2.0204, 0.4898, 0.8469, 0.1531, 0)
144 10 (0.1111, 1.5802, 0.1852, 3.6049, 0.0864, 0.5309, 0.0123, 0)
160 8 (0, 0.12, 0.48, 0, 0, 0)
160 10 (0.0925, 1.6675, 0.2025, 3.2475, 0.0975, 0.0825, 0.0075, 0.0025)
176 9 (0.0496, 0.2893, 0.0744, 1.4876, 0, 0, 0.0083)
176 10 (0.0744, 0.9008, 0.1240, 3.2562, 0.0579, 0.3967, 0.0083, 0)
192 8 (0, 0, 0.2222, 0.1111, 0, 0)
192 9 (0, 0.1667, 0.5, 1, 0, 0, 0)
192 10 (0, 0.2222, 0.8889, 2.2222, 0, 1, 0, 0)
208 9 (0.0355, 0.2781, 0.0533, 1.0769, 0, 0.0118, 0.0059)
208 10 (0.0533, 0.8462, 0.0888, 2.5680, 0.0414, 0.3195, 0.0059, 0)
224 9 (0, 0.1224, 0.1633, 0, 0, 1, 0)
224 10 (0, 0.7296, 0, 2.6276, 0, 0.2092, 0, 0.0051)
288 9 (0, 0.0741, 0.0988, 0, 0, 0.6049, 0)

4 80 5 (1.2, 9.88, 0.72)
96 4 (0.4444, 1.2222)
96 5 (1.1111, 7.8889, 0.6667)
112 5 (0.6122, 7.1633, 0.3673)
128 4 (0, 1)a
128 5 (0, 7, 0)
128 6 (0, 21, 0, 10)
176 5 (0.2479, 4.4215, 0.1488)
192 4 (0, 0.3333)a
192 5 (0, 4.3333, 0)
192 6 (0, 14.7778, 0, 5.5556)
240 4 (0.0533, 0.0133)
240 5 (0.4356, 2.4133, 0.4178)
256 5 (0, 0, 3)a
256 6 (0, 3, 12, 0)
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